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The (homogeneous) Beatty sequence associated with an irrational parameter α is the
integer sequence bnαc. There are a number of natural structures extending the additive
group (Z,+) which can be associated to such a sequence. The one considered here,
denoted Zα, adds the function bnαc with n ranging over Z (to avoid introducing the
order as well). A weaker structure, which we may call Z ′

α, will add only the range of
this function.

Somewhat richer structures have also been studied, notably the structureRα obtained
by enriching (R, <) by predicates for both Z and Zα. In the very particular case in which
α is a quadratic irrational, it has been shown that the first-order theory of Rα can be
analyzed using automata theory. This depends in a very direct way on the fact that
the continued fraction expansion is periodic. Furthermore, in the case in which α is
the golden ratio, the structure Sα which includes the multiplication map by α as well
can be similarly understood [P. Hieronymi, J. Symb. Log. 81 (2016), no. 3, 1007–1027;
MR3569117].

At the other end of the spectrum, the structure Z ′
α has been shown to be quite tame

[A. Günaydın and M. Özsahakyan, Ann. Pure Appl. Logic 173 (2022), no. 3, Paper No.
103062; MR4345246]. In the present paper a reasonably explicit set of axioms for the
complete (and model complete) theory of the structure Zα is given for the case in which
α is transcendental, via a quantifier elimination procedure. For this axiomatization to
be completely explicit, so that the corresponding theory is decidable, the parameter α
should itself be computable.

The idea is to interpret first-order formulas as “talking about” residues mod 1 rather
than integer parts, in an informal sense, and to use general results on equidistribution.
In particular, it is noticed that from this point of view, there is a natural first-order
definition of a dense linear order on Z.

The extension of these results to the case of algebraic α is sketched in the final section,
§5, along with a number of other related results and questions—notably, the question of
the effect of adding the usual order on Z to the language of the structure Zα.

G. Cherlin
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