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The paper under review is a nice contribution to the study and classification of expan-

sions of the real field. Let R = (R, <,+,,...) be a polynomially bounded o-minimal

expansion of the real field with field of exponents Q, and let S be a proper elementary

substructure whose underlying set S is dense in the usual order topology on R. Denote

the set of all integer powers of 2 by 2. “Definable” will mean definable with parameters.
The main result can be stated as follows: Every subset of R! definable in (R, S, 2%) is

a boolean combination of sets of the form

{zeR':3y e S™3z € (2%)" such that (z,y,2) € W}

for some W C RT™+7 definable in R. Among other things, it follows that every open
definable set in (R,S,2%) is definable in (R,2%). In addition, the author presents
a natural axiomatization of the theory of (R,S,2%), which does not depend on the
particular choice of §, and proves that it has NIP.

Note that the assumption that the field of exponents of R is Q is necessary [see
P. Hieronymi, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2163-2168 (Corollary 1.5);
MR2596055]. Similar results are known for (R,S) [L. van den Dries, Fund. Math. 157
(1998), no. 1, 61-78; MR1623615] and for (R, 2%) [C. L. Miller, in Logic Colloguium 01,
281-316, Lect. Notes Log., 20, Assoc. Symbol. Logic, Urbana, IL, 2005; MR2143901].
Indeed, the proof in the paper under review can be described as an amalgamation of
the proofs of those two results. Comparable results for the real field expanded by a
predicate for 223% and a predicate for 2Z were established in [A. Giinaydin, Model theory
of fields with multiplicative groups, Ph.D. thesis, Univ. Illinois Urbana-Champaign, 2008;
MR2712584]. Philipp Hieronymi
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