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The paper under review is a nice contribution to the study and classification of expan-
sions of the real field. Let R = (R, <,+, ·, . . . ) be a polynomially bounded o-minimal
expansion of the real field with field of exponents Q, and let S be a proper elementary
substructure whose underlying set S is dense in the usual order topology on R. Denote
the set of all integer powers of 2 by 2Z. “Definable” will mean definable with parameters.

The main result can be stated as follows: Every subset of Rl definable in (R,S, 2Z) is
a boolean combination of sets of the form

{x ∈ Rl : ∃y ∈ Sm∃z ∈ (2Z)n such that (x, y, z) ∈W}

for some W ⊆ Rl+m+n definable in R. Among other things, it follows that every open
definable set in (R,S, 2Z) is definable in (R, 2Z). In addition, the author presents
a natural axiomatization of the theory of (R,S, 2Z), which does not depend on the
particular choice of S, and proves that it has NIP.

Note that the assumption that the field of exponents of R is Q is necessary [see
P. Hieronymi, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2163–2168 (Corollary 1.5);
MR2596055]. Similar results are known for (R,S) [L. van den Dries, Fund. Math. 157

(1998), no. 1, 61–78; MR1623615] and for (R, 2Z) [C. L. Miller, in Logic Colloquium ’01,
281–316, Lect. Notes Log., 20, Assoc. Symbol. Logic, Urbana, IL, 2005; MR2143901].
Indeed, the proof in the paper under review can be described as an amalgamation of
the proofs of those two results. Comparable results for the real field expanded by a
predicate for 2Z3Z and a predicate for 2Z were established in [A. Günaydın, Model theory
of fields with multiplicative groups, Ph.D. thesis, Univ. Illinois Urbana-Champaign, 2008;
MR2712584]. Philipp Hieronymi
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