

Non-standard Fibonacci numbers and a model-complete axiomatization for the expansion of $\langle \mathbb{N}, +, < \rangle$ with a Beatty sequence

Mohsen Khani

Joint work with **Ali Valizadeh, Afshin Zarei**

Talk given at: Isfahan University of Technology, Department of Mathematical Sciences, Logic Group

September 20, 2025

Definability

Information hidden within a structure

Hidden information: Definability

- ▶ Order is hidden information in $\langle \mathbb{R}, +, \cdot \rangle$: let $a, b \in \mathbb{R}$, then

$$a < b \text{ iff } \langle \mathbb{R}, +, \cdot \rangle \models \exists z \quad b = a + z^2.$$

- ▶ Order is hidden information in $\langle \mathbb{Z}, +, \cdot \rangle$, for a completely different reason: let $a, b \in \mathbb{Z}$, then

$$a < b \text{ iff } \langle \mathbb{Z}, +, \cdot \rangle \models \exists z_1, z_2, z_3, z_4 \quad b = a + z_1^2 + z_2^2 + z_3^2 + z_4^2.$$

Definition

Let M be a structure. A set $X \subseteq M^n$ is definable if there is a formula φ such that $X = \{\bar{a} \in M : \varphi(\bar{a})\}$.

The hidden information may be surprising!

- ▶ Using only $+, \cdot$ can you give a formula φ to express being an integer in $\langle \mathbb{Q}, +, \cdot \rangle$:

$$\mathbb{Z} = \{a \in \mathbb{Q} : \langle \mathbb{Q}, +, \cdot \rangle \models \varphi(a)\}$$

$$\begin{aligned} \bigwedge_{A,B} \left(\left\{ \left(\bigvee_{x,y,z} 2 + BZ^2 = X^2 + AY^2 \right) \wedge \bigwedge_M \left[\left(\bigvee_{x,y,z} 2 + ABM^2 + BZ^2 \right. \right. \right. \right. \\ \left. \left. \left. \left. = X^2 + AY^2 \right) \rightarrow \left(\bigvee_{x,y,z} 2 + AB(M+1)^2 + BZ^2 = X^2 + AY^2 \right) \right] \right\} \\ \rightarrow \left(\bigvee_{x,y,z} 2 + ABN^2 + BZ^2 = X^2 + AY^2 \right) \right). \end{aligned}$$

Fact (Kleene)

Given $\langle \mathbb{N}, +, \cdot \rangle$ it is possible to write a formula φ that expresses the following:

The Turing machine number n halts at input m after k steps.

Decidability

Is there is an algorithm?

Decidability

Definition

T is decidable if there is an algorithm that gets φ as input and tells you whether $T \vdash \varphi$ or $T \not\vdash \varphi$.

Remark (separate but important story)

$T \not\vdash \varphi$ is **not** the same thing as $T \vdash \neg\varphi$.

Two extreme ends about natural numbers

- ▶ Gödel's incompleteness: $\langle \mathbb{Z}, +, \cdot \rangle$ is undecidable. (see Fact on page: 4)
- ▶ Presburger arithmetic: $\langle \mathbb{N}, +, < \rangle$ is decidable.

Question

How much multiplication is required for Gödel phenomenon?

Question

Is undecidability equivalent to the occurrence of Gödel phenomenon?

Model-Completeness

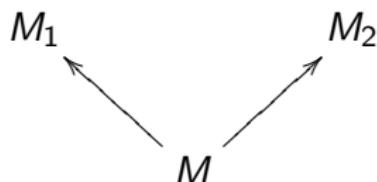
Can you solve systems of equations?

Some more elementary logic

Consider a system of equations:

$$\Sigma = \begin{cases} \psi_1(x, \bar{a}_1) \\ \vdots \\ \psi_n(x, \bar{a}_n) \end{cases}$$

- ▶ Quantifier-elimination: with coefficients from M , if solvable in M_1 solvable in M_2 .



- ▶ Model-completeness: with coefficients from M_1 if solvable in M_2 solvable in M_1 .

$$M_1 \longrightarrow M_2$$

Logically, quantifier-elimination means that every formula has a quantifier-free equivalent, and model completeness means that every formula has an equivalent in existential form.

Relation between the themes

How do we prove that a certain theory is decidable?

- ▶ Find the algorithm!
- ▶ Interpret it somewhere decidable, or
- ▶ Use model theory!

Definition (Complete theory)

T is complete if for any sentence φ either $T \vdash \varphi$ or $T \vdash \neg\varphi$.

Theorem

Recursive complete \Rightarrow decidable.

Corollary

Model-complete + has prime model + recursive \Rightarrow decidable.

The Talk!

Hieronymi: Regarding the question on page 7, consider traces of multiplication

Theorem (Hieronymi, [link](#))

- ▶ $\langle \mathbb{R}, \mathbb{Z}, +, \alpha \cdot x, < \rangle$ is decidable if and only if α is a square, say the golden ratio (proof: it can be interpreted—in a somehow complicated way—in the Büchi structure $(\mathbb{N}, P(\mathbb{N}), \in, s.)$)
- ▶ $\langle \mathbb{R}, \mathbb{Z}, +, \alpha\mathbb{Z}, \beta\mathbb{Z}, < \rangle$ with two traces of multiplication is undecidable, because it interprets multiplication. (here α and β , 1 are independent over \mathbb{Q}).

Question (Hieronymi)

Can you prove it model-theoretically?

Theorem (Khani, Valizadeh, Zarei)

- ▶ $\langle \mathbb{Z}, +, -, 0, 1, f(x) = \lfloor \varphi x \rfloor \rangle$ is decidable ([link](#))
- ▶ $\langle \mathbb{Z}, +, -, 0, 1, f(x) = \lfloor e \cdot x \rfloor \rangle$ is decidable, ([link](#))
- ▶ $\langle \mathbb{Z}, +, -, 0, 1, <, f(x) = \lfloor \varphi x \rfloor \rangle <$ is decidable, submitted ([link](#))

φ is the golden ratio and e is the Euler number

Theorem for this talk:

Theorem (Khani, Valizadeh, Zarei)

$\langle \mathbb{Z}, +, -, 0, 1, <, f(x) = \lfloor \varphi x \rfloor \rangle$ is model-complete and axiomatizable with a recursive theory. Hence it is decidable.

Observation

Being a first order structure, there is no decimal number in $\langle \mathbb{Z}, +, -, 0, 1, <, f(x) = \lfloor \varphi x \rfloor \rangle$. But it is possible to *talk about* the decimal parts:

$$[\varphi x] < [\varphi y] \leftrightarrow f(y - x) = f(y) - f(x) \quad (\text{order property})$$

Axiom

$[\varphi x] < [\varphi y]$ is a linear order.

Theorem

$[\varphi x] < [\varphi y]$ is actually a **dense** linear order.

Proof.

$$[\varphi x] < [x + \bar{f}(y - x)] < [\varphi y], \bar{f} = f + id.$$

Kronecker's Lemma

Let r be an irrational number and consider the sequence $(rn)_{n \in \mathbb{N}}$. Then for each subinterval $I \subseteq [0, 1]$ there is $n \in \mathbb{N}$ such that $[rn] \in I$.

Interesting:

In our previous work, we put Kronecker's theorem as an axiom, but according to the previous theorem, it is already a theorem in our theory. Indeed this is the main reason that

$\langle \mathbb{Z}, +, -, 0, 1, f(x) = \lfloor \varphi x \rfloor \rangle$ admits quantifier elimination (see KZ).

Some important issue to address regarding model-completeness

Question

Let $M_1 \subseteq M_2$ be two models (of your appropriate theory for this structure). Let $a, b, c, d \in M_1$. Assume that M_2 models the following sentence:

$$\exists x \left\{ \begin{array}{l} a < x < b \\ [\varphi c] < [\varphi x] < [\varphi d] \end{array} \right.$$

Is there any reason to think that the formula above also holds in M_1 ?

Remember

The definition of model-completeness from page 9.

Minimum of the decimal parts in an interval

Axiom

Let M be a model. In any interval $[a, b]$ there is c such that

$$[\varphi c] = \min\{[\varphi x] : x \in [a, b]\}.$$

Call this: $c_{[a,b]}^M$. If the answer to Question 4 is positive, then we will have:

$$c_{[a,b]}^{M_2} = c_{[a,b]}^{M_1}.$$

Because otherwise there would exist an element smaller than $c_{[a,b]}^{M_1}$ in M_2 .

Restrict to intervals $[0, a]$

Theorem

$c^{\mathbb{N}}(0, n)$ is the largest Fibonacci number smaller than n , with an even index.

Corollary

The set of even-indexed Fibonacci numbers is definable in $\langle \mathbb{Z}, +, -, 0, 1, <, f(x) = \lfloor \varphi x \rfloor \rangle$.

Enrich the language:

Add to the language a function $F(x) =$ the largest even Fibonacci number smaller than x .

Theorem

$$c_{[a,b]}^{M_2} = c_{[a,b]}^{M_1}$$

Whenever $M_1 \subseteq M_2$ are models and $a, b, c, d \in M_1$.

Proof.

To be explained to the audience.

Axiom

If there is t such that $a < t < b$ and $[\varphi c] < [\varphi t] < [\varphi d]$ then there is $t \in (a, b)$ such that

$$[\varphi t] = \min\{[\varphi x] : [\varphi c] < [\varphi x] < [\varphi d]\} \quad (1)$$

That is $[\varphi t]$ is the larger but the closest to $[\varphi c]$.

Observation

Whenever t is as in (1) then

$$t = a + c_{(a-c, b-c)}^M.$$

IMPORTANT: THE CONVERSE DOES NOT HOLD.

Theorem

Let $M_1 \subseteq M_2$ be models. If the following holds in M_2 then it does so in M_1 :

$$\exists x \quad (a < x < b) \wedge ([\varphi c] < [\varphi x] < [\varphi c])$$

Proof.

If there is x as above, then there is x with the above property whose decimal is the closest to $[\varphi c]$. By Observation in the previous page (page 22) we have

$$x = a + c_{(a-c, b-c)}^{M_2} = a + c_{(a-c, b-c)}^{M_1} \in M_1.$$

□

Corollary (with further justifications!)

$\langle \mathbb{Z}, +, -, 0, 1, <, f(x) = \lfloor \varphi x \rfloor \rangle$ is model-complete (using this we can prove that it is also complete and decidable)